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Fingerprint enhancement using STFT analysis
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Abstract

Contrary to popular belief, despite decades of research in fingerprints, reliable fingerprint recognition is still an open problem. Extracting
features out of poor quality prints is the most challenging problem faced in this area. This paper introduces a new approach for fingerprint
enhancement based on short time Fourier transform (STFT) Analysis. STFT is a well-known technique in signal processing to analyze
non-stationary signals. Here we extend its application to 2D fingerprint images. The algorithm simultaneously estimates all the intrinsic
properties of the fingerprints such as the foreground region mask, local ridge orientation and local ridge frequency. Furthermore we propose
a probabilistic approach of robustly estimating these parameters. We experimentally compare the proposed approach to other filtering
approaches in literature and show that our technique performs favorably.
� 2006 Published by Elsevier Ltd on behalf of Pattern Recognition Society.
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1. Introduction

The performance of a fingerprint feature extraction and
matching algorithm depends critically upon the quality of
the input fingerprint image. While the ‘quality’ of a finger-
print image cannot be objectively measured, it roughly cor-
responds to the clarity of the ridge structure in the fingerprint
image. Where as a ‘good’ quality fingerprint image has high
contrast and well-defined ridges and valleys, a ‘poor’ quality
fingerprint is marked by low contrast and ill-defined bound-
aries between the ridges. There are several reasons that may
degrade the quality of a fingerprint image:

(1) Presence of creases, bruises or wounds may cause ridge
discontinuities.

(2) Excessively dry fingers lead to fragmented and low con-
trast ridges.
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(3) Sweat on fingerprints leads to smudge marks and con-
nects parallel ridges.

The quality of fingerprint encountered during verification
varies over a wide range as shown in Fig. 1. It is estimated
that roughly 10% of the fingerprint encountered during ver-
ification can be classified as ‘poor’ [1]. Poor quality finger-
prints lead to generation of spurious minutiae. In smudgy
regions, genuine minutiae may also be lost, the net effect of
both leading to loss in accuracy of the matcher.

The robustness of the recognition system can be improved
by incorporating an enhancement stage prior to feature ex-
traction. Due to the non-stationary nature of the fingerprint
image, general-purpose image processing algorithms are not
very useful in this regard but serve only as a preprocessing
step in the overall enhancement scheme. Furthermore, pixel
oriented enhancement schemes like histogram equalization
[2], mean and variance normalization [3], Wiener filtering
[4] improve the legibility of the fingerprint but do not alter
the ridge structure. Also, the definition of noise in a generic
image and a fingerprint are widely different. The noise in a



S. Chikkerur et al. / Pattern Recognition 40 (2007) 198–211 199

Fig. 1. Fingerprint images of different quality. The quality decreases from left to right: (a) good quality image with high contrast between the ridges and
valleys and (b) insufficient distinction between ridges and valleys in the center of the image (c) and (d) dry prints.

fingerprint image consists of breaks in the directional flow
of ridges. In the next section, we will discuss some previous
filtering approaches that were designed to enhance the ridge
structure specifically.

2. Prior related work

Due to the non-stationary nature of the fingerprint image, a
single filter that operates on the entire image is not practical.
Instead, the filter parameters should be adapted to enhance
the local ridge structure. Consequently, a majority of the
existing techniques are based on the use of contextual filters
whose parameters depend on the local ridge frequency and
orientation. The context information includes

(1) Ridge continuity: The underlying morphogenetic pro-
cess that produced the ridges does not allow for irreg-
ular breaks in the ridges except at ridge endings.

(2) Regularity: Although the fingerprint represents a non-
stationary image, the intrinsic properties such as instan-
taneous orientation and ridge frequency varies slowly
across the fingerprint surface.

Due to the regularity and continuity properties of the finger-
print image occluded and corrupted regions can be recov-
ered using the contextual information from the surrounding
neighborhood. Hong et al. [3] label such regions as ‘recover-
able’ regions. The efficiency of an automated enhancement
algorithm depends on the extent to which they utilize con-
textual information. The filters themselves may be defined
in spatial or in the Fourier domain.

2.1. Spatial domain filtering

O’Gorman et al. [5] proposed the use of contextual filters
for fingerprint image enhancement for the first time. They
use an anisotropic smoothening kernel whose major axis is
oriented parallel to the ridges. For efficiency, they precom-
pute the filter in 16 directions. The filter increases contrast
in a direction perpendicular to the ridges while performing

smoothening in the direction of the ridges. Recently, Green-
berg et al. [4] proposed the use of an anisotropic filter that
is based on structure adaptive filtering by Yang et al. [6].
The filter kernel is adapted at each point in the image and
is given by

f (x, x0)= S + V �(x − x0) exp

{
−
(

((x − x0) · n)2

�2
1(x0)

+ ((x − x0) · n⊥)2

�2
2(x0)

)}
. (1)

Here n and n⊥ represents unit vectors parallel and perpen-
dicular to the ridges, respectively. �1 and �2 control the ec-
centricity of the filter. �(x − x0) determines the support of
the filter and chosen such that �(x)= 0 when |x − x0|> r .

Another approach based on directional filtering kernel is
by Hong et al. [3]. The main stages of their algorithm are
as follows:

(1) Normalization: This procedure normalizes the global
statistics of the image, by reducing each image to a fixed
mean and variance. Although this pixel wise operation
does not change the ridge structure, the contrast and
brightness of the image are normalized as a result. The
normalized image is defined as

G(i, j)=
⎧⎨
⎩

M0 +
√

VAR0((I−M)2)
VAR if I (i, j) > M

M0 −
√

VAR0((I−M)2)
VAR otherwise

⎫⎬
⎭ .

(2)

(2) Orientation estimation: This step determines the dom-
inant direction of the ridges in different parts of the
fingerprint image. This is a critical process and errors
occurring at this stage are propagated into the frequency
estimation and filtering stages. More details are dis-
cussed w.r.t intrinsic images (see Section 2.3).

(3) Frequency estimation: This step is used to estimate the
inter-ridge separation in different regions of the finger-
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print image. More techniques for frequency estimation
are discussed w.r.t intrinsic images (see Section 2.3).

(4) Segmentation: In this step, a region mask is derived
that distinguishes between ‘recoverable’ and ‘unrecov-
erable’ portions of the fingerprint image.

(5) Filtering: Finally, using the context information con-
sisting of the dominant ridge orientation and ridge sep-
aration, a band pass filter is used to enhance the ridge
structure.

The algorithm uses a properly oriented Gabor kernel for per-
forming the enhancement. Gabor filters have important sig-
nal properties such as optimal joint space frequency resolu-
tion [7]. Gabor elementary functions form a very intuitive
representation of fingerprint images since they capture the
periodic, yet non-stationary nature of the fingerprint regions.
Daugman [8] and Lee [9] have used Gabor elementary func-
tions to represent generic 2D images. The even symmetric
form of the Gabor elementary function that is oriented at an
angle 0◦ is given by

G(x, y)= exp

{
−1

2

[
x2

�2
x

+ y2

�2
y

]}
cos(2�f x). (3)

Here f represents the ridge frequency and the choice of �2
x

and �2
y determines the shape of the filter envelope and also

the trade of between enhancement and spurious artifacts. If
�2
x ��2

y results in excessive smoothening in the direction of
the ridges causing discontinuities and artifacts at the bound-
aries. The filter for any other direction � may be obtained
by rotating the elementary kernel. The determination of the
ridge orientation and ridge frequencies are discussed in de-
tail in Section 2.3. This is by far, the most popular approach
for fingerprint enhancement. While the compact support of
the Gabor kernel is beneficial from a time-frequency anal-
ysis perspective, it does not necessarily translate to an effi-
cient means for enhancement. Our algorithm is based on a
filter that has separable radial and angular components and
is tuned specifically to the distribution of orientation and fre-
quencies in the local region of the fingerprint image. Other

Fig. 3. (a) Real part of the gabor and (b) the Fourier spectrum of the Gabor kernel showing the localization in the frequency domain.

approaches based on spatial domain techniques can be found
in Ref. [10]. More recent work based on reaction diffusion
techniques can be found in Refs. [11,12] (Figs. 2 and 3).

2.2. Fourier domain filtering

This section deals with filters that are defined explicitly in
the Fourier domain. This excludes discussion of spatial con-
volution methods that are accomplished in the Fourier do-
main. Sherlock and Monro [13] perform contextual filtering
completely in the Fourier domain. Each image is convolved
with precomputed filters of the same size as the image.
The precomputed filter bank (labeled PF 0, PF 1 . . . PFN in
Fig. 4) are oriented in eight different direction in intervals
of 22.5◦. However, the algorithm assumes that the ridge fre-
quency is constant through out the image in order to prevent
having a large number of precomputed filters. Therefore the
algorithm does not utilize the full contextual information
provided by the fingerprint image. The filter used is separa-
ble in radial and angular domain and is given by

H(�, �)=H�(�)H�(�), (4)

H�(�)=
√√√√[ (��BW )2n

(��BW )2n + (�2 − �2
0)

2n

]
, (5)

Fig. 2. The anisotropic filtering kernel proposed by Greenberg et al. [4].
The filter shown has S =−2, V = 10, �2

1(x0)= 4, �2
2(x0)= 2.
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Fig. 4. Block diagram of the filtering scheme proposed by Sherlock and Monro [13].

H�(�)=
{

cos2 �

2

(�− �c)

�BW

if |�|< �BW

0 otherwise

}
. (6)

Here H�(�) is a band-pass butterworth filter with center
defined by �0 and bandwidth �BW . The angular filter is a
raised cosine filter in the angular domain with support �BW

and center �c. However, the precomputed filters mentioned
before are location independent. The contextual filtering is
actually accomplished at the stage labeled ‘selector’. The
‘selector’ uses the local orientation information to combine
the results of the filter bank using appropriate weights for
each output. The algorithm also accounts for the curvature
of the ridges, something that was overlooked by the previous
filtering approaches including Gabor filtering. In regions of
high curvature, the assumption of a single dominant ridge
direction is not valid. Having a fixed angular bandwidth lead
to spurious artifacts and subsequently spurious minutiae. In
the approach proposed by Sherlock et al. the angular band-
width of the filter is taken as a piece wise linear function of
the distance from the singular points such as core and delta.
However, this requires that the singular point be estimated
accurately, a difficult task in poor quality images. In our al-
gorithm, we utilize the angular coherence measure proposed
by Rao [14]. This is more robust to errors in the orientation
estimation and does not require us to compute the singular
point locations. The results in their paper also indicate that
while the algorithm is able to eliminate most of the false
minutiae, it also misses more number of genuine minutiae
when compared to other existing algorithms.

Watson et al. [15] proposed another approach for perform-
ing enhancement completely in the Fourier domain. This is
based on ‘root filtering’ technique [16]. In this approach the
image is divided into overlapping block and in each block,
the enhanced image is obtained by

Ienh(x, y)= FFT −1{F(u, v)|F(u, v)|k}, (7)

F(u, v)= FFT (I (x, y)). (8)

Another advantage of this approach is that it does not require
the computation of intrinsic images (Section 2.3) for its op-
eration. This has the effect of increasing the dominant spec-
tral components while attenuating the weak components.
This resembles matched filtering very closely. However, in
order to preserve the phase, the enhancement also retains
the original spectrum F(u, v).

2.3. Intrinsic images

The intrinsic images represent the important properties of
the fingerprint image as a pixel map. These include:

(1) Orientation image: The orientation image O represents
the instantaneous ridge orientation at every point in the
fingerprint image. However, in practice the orientation
image is computed at a much lower resolution (assign-
ing an orientation for each block of the image). The
ridge orientation is not defined in regions where the
ridges are not present.

(2) Frequency image: The local ridge frequency indicates
the average inter ridge distance within a block. Simi-
lar to the orientation image, the ridge frequency is not
defined for the background regions.

(3) Region mask: The region mask indicates the parts of
the image where ridge structures are present. It is also
known as the foreground mask. Some techniques [3]
are even able to distinguish between recoverable and
unrecoverable regions.

The computation of the intrinsic images forms a very
critical step in the feature extraction process. Errors in
computing these propagate through all the stages of the
algorithm. In particular, errors in estimation of ridge orien-
tation will affect enhancement, feature extraction and as a
consequence the accuracy of the recognition. Applications
that require a reliable orientation map include enhance-
ment [3,5,13,17], singular point detection [18–20] and
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segmentation [21] and most importantly fingerprint clas-
sification. The region mask is used to eliminate spurious
minutiae [3,17].

2.3.1. Orientation image
There have been several approaches to estimate the ori-

entation image of a fingerprint image. These include the
use of gradients [3], filter banks [22], template comparison
[20], and ridge projection based methods [13]. The orienta-
tion estimation obtained by these methods is noisy and have
to be smoothened before further use. These are based on
vector averaging [23], relaxation methods [13], and math-
ematical orientation models [24–26]. The orientation mod-
els depend on reliable detection of the core and delta points
in the fingerprint image. Most of the methods for singu-
lar point extraction [18–20] depend on a reliable orienta-
tion map (a circular dependency). Therefore, the orientation
map has to be estimated to a reasonable accuracy to begin
with.

Here we discuss some popular approaches for comput-
ing the orientation image. Except in the region of singu-
larities such as core and delta, the ridge orientation varies
very slowly across the image. Therefore the orientation im-
age is seldom computed at full-resolution. Instead each non-
overlapping block of size W ×W of the image is assigned
a single orientation that corresponds to the most probable
or dominant orientation of the block. The horizontal and
vertical gradients Gx(x, y) and Gy(x, y), respectively, are
computed using simple gradient operators such as a Sobel
mask [2]. The block orientation � is obtained using the
following relations:

Gyy =
∑
u∈W

∑
v∈W

2Gx(u, v)Gy(u, v), (9)

Gxx =
∑
u∈W

∑
v∈W

G2
x(u, v)−G2

y(u, v), (10)

Fig. 5. Projection sum obtained for a window oriented along the ridges: (a) sample fingerprint, (b) synthetic image, and (c) Radon transform of the
fingerprint region.

�= 1

2
tan−1 Gyy

Gxx

. (11)

A rigorous derivation of the above relation is provided in
Ref. [23]. The dominant orientation so obtained still con-
tains inconsistencies caused by creases and ridge breaks.
Utilizing the regularity property of the fingerprint, the orien-
tation image is smoothened. However, due to the ambiguity
between 0◦ and 180◦ orientations, simple averaging cannot
be utilized. Instead the orientation image is smoothened by
vector averaging. Each block orientation is replaced with its
neighborhood average according to

�′(i, j)= 1

2
tan−1

{
G(x, y) ∗ sin(2�(i, j))

G(x, y) ∗ cos(2�(x, y))

}
. (12)

Here G(x, y) represents a smoothening kernel such as a
Gaussian [2].

2.3.2. Ridge frequency image
The ridge frequency map is another intrinsic property of

the fingerprint image. The ridge frequency is also a slowly
varying property and hence is computed only once for each
non-overlapping block of the image. It is estimated based
on the projection sum taken along a line oriented orthogonal
to the ridges [3], or based on the variation of gray levels in
a window oriented orthogonal to the ridge flow [27]. The
projection sum forms a sinusoidal signal and the distance
between any two peaks provides the inter-ridge distance. The
process of taking the projection is equivalent to computing
the Radon transform at the angle of the ridge orientation. As
Fig. 5 shows, the sinusoidal nature of the projection sum is
easily visible. More details may be obtained from Ref. [3].
Maio and Maltoni [28] proposed a technique that can be
used to compute the ridge spacing without performing peak
detection. The frequency image so obtained may be further
filtered to remove the outliers. However, all these method
depend upon computing a reliable orientation map.
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3. Proposed approach

We present a new fingerprint image enhancement algo-
rithm based on contextual filtering in the Fourier domain.
The proposed algorithm is able to simultaneously yield
the local ridge orientation and ridge frequency informa-
tion using short time Fourier analysis. The algorithm is
also able to successfully segment the fingerprint images.
The following are some of the advantages of the proposed
approach:

(1) The proposed approach obviates the need for multiple
algorithms to compute the intrinsic images and replaces
it with a single unified approach.

(2) This is also a more formal approach for analyzing
the non-stationary fingerprint image than the lo-
cal/windowed processing found in literature.

(3) The algorithm simultaneously computes the orientation
image, frequency image and the region mask as a re-
sult of the short time Fourier analysis. In most of the
existing algorithms the frequency image and the region
mask depend critically on the accuracy of the orienta-
tion estimation.

(4) The estimate is probabilistic and does not suffer from
outliers unlike most maximal response approaches
found in literature.

(5) The algorithm utilized complete contextual information
including instantaneous frequency, orientation and even
orientation coherence/reliability.

3.1. Overview

Fig. 6 illustrates the overview of the proposed approach.
During short time Fourier transform (STFT) analysis, the
image is divided into overlapping windows. It is assumed
that the image is stationary within this small window and can
be modeled approximately as a surface wave. The Fourier
spectrum of this small region is analyzed and probabilistic

Fig. 6. Overview of the proposed approach.

estimates of the ridge frequency and ridge orientation are
obtained. The STFT analysis also yields an energy map that
may be used as a region mask to distinguish between the fin-
gerprint and the background regions. The orientation image
is then used to compute the angular coherence [14]. The co-
herence image is used to adapt the angular bandwidth. The
resulting contextual information is used to filter each win-
dow in the Fourier domain. The enhanced image is obtained
by tiling the result of each analysis window.

3.2. Short time Fourier analysis

The fingerprint image may be thought of as a system of
oriented texture with non-stationary properties. Therefore
traditional Fourier analysis is not adequate to analyze the
image completely. We need to resolve the properties of the
image both in space and also in frequency. We can extend the
traditional one dimensional time-frequency analysis to two
dimensional image signals to perform short (time/space)-
frequency analysis. In this section we recapitulate some of
the principles of 1D STFT analysis and show how it is
extended to two dimensions for the sake of analyzing the
fingerprint.

When analyzing a non-stationary 1D signal x(t) it is as-
sumed that it is approximately stationary in the span of a
temporal window w(t) with finite support. The STFT of x(t)

is now represented by time frequency atoms X(�, 	) [29]
and is given by

X(�, 	)=
∫ ∞

−∞
x(t)W ∗(t − �)e−j	t dt . (13)

In the case of 2D signals such as a fingerprint image, the
space-frequency atoms is given by

X(�1, �2, 	1, 	2)=
∫ ∞

−∞

∫ ∞

−∞
I (x, y)W ∗(x − �1, y − �2)

× e−j (	1x+	2y) dx dy. (14)
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Fig. 7. (a) Overlapping window parameters used in the STFT analysis, (b) illustration of how analysis windows are moved during analysis, and
(c) spectral window used during STFT analysis.

Here �1, �2 represent the spatial position of the two dimen-
sional window W(x, y). 	1, 	2 represents the spatial fre-
quency parameters. Fig. 7 illustrates how the spectral win-
dow is parameterized. At each position of the window, it
overlaps OVRLP pixels with the previous position. This
preserves the ridge continuity and eliminates ‘block’ ef-
fects common with other block processing image operations.
Each such analysis frame yields a single value of the domi-
nant orientation and frequency in the region centered around
(�1, �2). However, unlike regular Fourier transform, the re-
sult of the STFT is dependent on the choice of the window
w(t). For the sake of analysis any smooth spectral window
such as Hanning, Hamming or even a Gaussian [30] window
may be utilized. However, since we are also interested in
enhancing and reconstructing the fingerprint image directly
from the Fourier domain, our choice of window is fairly re-
stricted. In order to provide suitable reconstruction during
enhancement, we utilize a raised cosine window that tapers
smoothly near the border and is unity at the center of the
window.

With the exception of the singularities such as core and
delta any local region in the fingerprint image has a consis-
tent orientation and frequency. Therefore, the local region
can be modeled as a surface wave that is characterized com-
pletely by its orientation � and frequency f. It is these pa-
rameters that we hope to infer by performing STFT analysis.
This approximation model does not account for the presence
of local discontinuities but is useful enough for our purpose.
A local region of the image can be modeled as a surface
wave according to

I (x, y)= A{cos(2�f (x cos(�)+ y sin(�)))}. (15)

The parameters of the surface wave (f, �) may be easily
obtained from its Fourier spectrum that consists of two im-
pulses whose distance from the origin indicates the fre-
quency and its angular location indicates the orientation
of the wave. However, this straight forward approach is
not very useful since the maximum response is prone to

errors. Creases running across the fingerprint can easily put
off such maximal response estimators. Instead, we propose
a probabilistic approximation of the dominant ridge orien-
tation and frequency. It is to be noted that the surface wave
model is only an approximation, and the Fourier spectrum
of the real fingerprint images is characterized by a distribu-
tion of energies across all frequencies and orientations. We
can represent the Fourier spectrum in polar form as F(r, �).
We can define a probability density function p(r, �) and the
marginal density functions p(�), p(r) as

p(r, �)= |F(r, �)|2∫
r

∫
� |F(r, �)|2 , (16)

p(r)=
∫
�
p(r, �) d�, (17)

p(�)=
∫

r

p(r, �) dr . (18)

This interpretation also offers another view of the Fourier
spectrum. The spectrum may now thought of to be a distri-
bution of surface waves, with the likelihood of each surface
wave being proportional to |F(r, �)|.

3.3. Ridge orientation image

We assume that the orientation � is a random variable
that has the probability density function p(�). The expected
value of the orientation may then be obtained by performing
a vector averaging according to Eq. (19). The terms sin(2�)

and cos(2�) are used to resolve the orientation ambiguity
between orientations ±180◦:

E{�} = 1

2
tan−1

{ ∫
� p(�) sin(2�) d�∫
� p(�) cos(2�) d�

}
. (19)

The estimate is also optimal from a statistical sense as shown
in Ref. [31]. However, if there is a crease in the fingerprints
that spans several analysis frames, the orientation estimation
will still be wrong. The estimate will also be inaccurate
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Fig. 8. (a) Local region in a fingerprint image and (b) surface wave approximation (c) and (d) Fourier spectrum of the real fingerprint and the surface
wave. The symmetric nature of the Fourier spectrum arrives from the properties of the Fourier transform for real signals [2].

Fig. 9. Outline of the enhancement algorithm.

when the frame consists entirely of unrecoverable regions
with poor ridge structure or poor ridge contrast. In such in-
stances, we can estimate the ridge orientation by considering
the orientation of its immediate neighborhood. The result-
ing orientation image O(x, y) is further smoothened using
vectorial averaging. The smoothened image O ′(x, y) is ob-
tained using

O ′(x, y)= 1

2

{
tan−1 sin(2O(x, y)) ∗W(x, y)

cos(2O(x, y) ∗W(x, y)

}
. (20)

Here W(x, y) represent a Gaussian smoothening kernel. It
has been our experience that a smoothening kernel of size
3×3 applied repeatedly provides a better smoothening result
than using a larger kernel of size 5× 5 or 7× 7.

3.4. Ridge frequency image

The average ridge frequency is estimated in a manner sim-
ilar to the ridge orientation. We can assume the ridge fre-
quency to be a random variable with the probability density
function p(r) as in Eq. (17). The expected value of the ridge
frequency is given by

E{r} =
∫

r

p(r)r dr . (21)

The frequency map so obtained is smoothened by process of
isotropic diffusion. Simple smoothening cannot be applied
since the ridge frequency is not defined in the background
regions. Furthermore the ridge frequency estimation ob-
tained at the boundaries of the fingerprint foreground and the
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Fig. 10. (a) ROC curves with and without enhancement (FVC2002 DB3 database). It can be seen that the proposed algorithm compares favorably with
Gabor based filtering approach, especially in the low false accept region of operation. (b) Some examples of adversial images present in DB3.

Fig. 11. (a) Original image, (b) orientation image, (c) energy image, (d) ridge frequency image, (e) angular coherence image, and (f) enhanced image.

image background is inaccurate in practice. The errors in
this region will propagate as a result of the plain smoothen-
ing. The smoothened is obtained by the following:

F ′(x, y)=
∑x+1

u=x−1
∑y+1

v=y−1 F(u, v)W(u, v)I (u, v)∑y+1
v=y−1 W(u, v)I (u, v)

. (22)

This is similar to the approach proposed in Ref. [3]. Here
W(x, y) represents a Gaussian smoothening kernel of size
3× 3. The indicator variable I (x, y) ensures that only valid
ridge frequencies are considered during the smoothening
process. I (x, y) is non-zero only if the ridge frequency
is within the valid range. It has been observed that the
inter-ridge distance varies in the range of 3–25 pixels per
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Fig. 12. (a) and (b) Original and enhanced image (sample taken from FVC2002 DB1 database). (c), (d), (a), and (b) Original and enhanced image
(sample taken from FVC2002 DB2 database).

ridge [3]. Regions where inter-ridge separation/frequency
are estimated to be outside this range are assumed to be
invalid.

3.5. Region mask

The fingerprint image may be easily segmented based on
the observation that the surface wave model does not hold in
regions where ridges do not exist. In the areas of background
and noisy regions, there is very little structure and hence very
little energy content in the Fourier spectrum. We define an
energy image E(x, y), where each value indicates the energy
content of the corresponding block. The fingerprint region
may be differentiated from the background by thresholding

the energy image. We take the logarithm values of the energy
to the large dynamic range to a linear scale:

E(x, y)= log

{∫
r

∫
�
|F(r, �)|2

}
. (23)

The region mask is obtained by thresholding. We use Otsu’s
optimal thresholding [32] technique to automatically deter-
mine the threshold. The resulting binary image is processed
further to retain the largest connected component and binary
morphological processing [33].

3.5.1. Coherence image
Block processing approaches are associated with spu-

rious artifacts caused by discontinuities in the ridge flow
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Fig. 13. (a) and (b) Original and enhanced image (sample taken from FVC2002 DB3 database). (c), (d), (a), and (b) Original and enhanced image
(sample taken from FVC2002 DB4database).

at the block boundaries. This is especially problematic in
regions of high curvature close to the core and deltas that
have more than one dominant direction. These problems
are clearly illustrated in Ref. [4]. To offset this problem,
Sherlock and Monro [13] used a piece wise linear depen-
dence between the angular bandwidth and the distance
from the singular point location. However, this requires a
reasonable estimation of the singular point location. Most
algorithms for singular point location are obtained from
the orientation [18,19] map that is noisy in poor quality
images (a circular dependency as outlined before). Instead
we rely on the flow-orientation/angular coherence mea-
sure [14] that is more robust than singular point detection.
The coherence is related to dispersion measure of circular

data:

C(x0, y0)=
∑

(i,j)∈W | cos(�(x0, y0)− �(xi, yi))|
W ×W

. (24)

The coherence is high when the orientation of the central
block �(x0, y0) is similar to each of its neighbors �(xi, xj ).
In a fingerprint image, the coherence is expected to be low
close to the points of the singularity. In our enhancement
scheme, we utilize this coherence measure to adapt the an-
gular bandwidth of the directional filter (Fig. 8).

3.6. Enhancement

The algorithm for enhancement can now be outlined as
follows. The algorithm consists of two stages. The first stage
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Fig. 14. (a) Original image displaying poor contrast and ridge structure, (b) result of root filtering [15], (c) result of Gabor filter based enhancement, and
(d) result using proposed algorithm.

consists of STFT analysis and the second stages performs
the contextual filtering. The STFT stage yields the ridge
orientation image, ridge frequency image and the block en-
ergy image which is then used to compute the region mask.
Therefore the analysis phase simultaneously yields all the
intrinsic images that are needed to perform full contextual
filtering. The filter itself is separable in angular and fre-
quency domains and is identical to the filters mentioned in
Ref. [13] and outlined in Eqs. (4). In our algorithm, the ra-
dial bandwidth is also adapted for each block to cover two
octaves around the central frequency �0 (Figs. 9 and 10).

4. Experimental evaluation

The results of each stage of the STFT analysis and the en-
hancement is shown in Fig. 11. It can be seen that the qual-
ity of reconstruction is not affected even around the points
of high curvature marked by the presence of the singulari-
ties. The result of enhancement on several images from FVC

database [34] database is shown in Figs. 12 and 13. It can be
seen that the enhancement improves the ridge structure even
in the areas of high ridge curvature without introducing any
artifacts. Fig. 14 shows the comparative results for a poor
quality fingerprint image. While the effect of the enhance-
ment algorithm may be gauged visually, the final objective
of the enhancement process is to increase the accuracy of the
recognition system. We evaluate the effect of our enhance-
ment on a set of 800 images (100 users, 8 images each)
derived from FVC2002 [34] DB3 database. The total num-
ber of genuine and impostor comparison are 2800 and 4950,
respectively. We used NIST’s NFIS2 open source software
(http://fingerprint.nist.gov) for the sake of feature extraction
and matching. The ROC curves before and after enhance-
ment are as shown in the Fig. 10. The summary of the results
is provided in Table 1. (These results are improved versions
of our work in Ref. [35].) The matlab code for the proposed
enhancement scheme, Watson’s root filtering approach [15]
and Hong et al.’s gabor filtering approach [3] are available
from 〈http://www.eng.buffalo.edu/ssc5〉.
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Table 1
Summary of the performance results over FVC2002 DB3

Database Metric Without enhancement Hong et al. Proposed
(%) (%) (%)

DB3 EER 10.35 7.8 7.8
FMR100 19.50 13.0 15.0

It can be seen that the proposed algorithm compares favorably with Gabor
based filtering approach.

5. Summary

The performance of a fingerprint feature extraction and
matching algorithms depend heavily upon the quality of
the input fingerprint image. We presented a new finger-
print image enhancement algorithm based on STFT anal-
ysis and contextual/non-stationary filtering in the Fourier
domain. The algorithm has several advantages over the
techniques proposed in literature such as: (i) All the in-
trinsic images (ridge orientation, ridge frequency, region
mask) are estimated simultaneously from STFT analy-
sis. The estimation is probabilistic and is therefore more
robust. (ii) The enhancement utilizes the full contextual
information (orientation, frequency, angular coherence)
for enhancement. (iii) The algorithm has reduced space
requirements compared to more popular Fourier domain
based filtering techniques. We perform an objective eval-
uation of the enhancement algorithm by considering the
improvement in matching accuracy for poor quality prints.
We show that it results in 24.6% relative improvement
in recognition rate over a set of 800 images in FVC2002
DB3 [34] database. Our future work includes developing
a more robust orientation smoothening algorithm prior to
enhancement.
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